Part Number Hot Search : 
LVC1G86 BFR35A XC2VP100 P45AB LCB120 MLL4741A ICX205 BSP42
Product Description
Full Text Search
 

To Download IRFB3207 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  benefits  worldwide best r ds(on) in to-220  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability d 2 pak irfs3207 to-220ab IRFB3207 to-262 irfsl3207 IRFB3207 irfs3207 irfsl3207 applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g v dss 75v r ds(on) typ. 3.6m  max. 4.5m  i d 180a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.45 r cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ja junction-to-ambient, to-220  ??? 62 r ja junction-to-ambient (pcb mount) , d 2 pak  ??? 40 910 see fig. 14, 15, 16a, 16b, 330 5.8 -55 to + 175 20 2.2 10lb in (1.1n m) 300 max. 180  130  720 2014-8-13 1 www.kersemi.com


 calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a  repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.33mh r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above this value. i sd 75a, di/dt 500a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.     
      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 75 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.69 ??? v/c r ds(on) static drain-to-source on-resistance ??? 3.6 4.5 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 r g gate input resistance ??? 1.2 ??? ? f = 1mhz, open drain dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 150 ??? ??? s q g total gate charge ??? 180 260 nc q gs gate-to-source charge ??? 48 ??? q gd gate-to-drain ("miller") charge ??? 68 ??? t d(on) turn-on delay time ??? 29 ??? ns t r rise time ??? 120 ??? t d(off) turn-off delay time ??? 68 ??? t f fall time ??? 74 ??? c iss input capacitance ??? 7600 ??? pf c oss output capacitance ??? 710 ??? c rss reverse transfer capacitance ??? 390 ??? c oss eff. (er) effective output capacitance (energy related) ??? 920 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 1010 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 180  a (body diode) i sm pulsed source current ??? ??? 720 (body diode)    v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 42 63 ns t j = 25c v r = 64v, ??? 49 74 t j = 125c i f = 75a q rr reverse recovery charge ??? 65 98 nc t j = 25c di/dt = 100a/s  ??? 92 140 t j = 125c i rrm reverse recovery current ??? 2.6 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 50v, i d = 75a i d = 75a v gs = 20v v gs = -20v mosfet symbol showing the v ds = 60v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 60v  , see fig.11 v gs = 0v, v ds = 0v to 60v  , see fig. 5 t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma  v gs = 10v, i d = 75a  v ds = v gs , i d = 250a v ds = 75v, v gs = 0v v ds = 75v, v gs = 0v, t j = 125c i d = 75a r g = 2.6 ? v gs = 10v  v dd = 48v 2014-8-13 2 www.kersemi.com
fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 50v 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 240 280 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v vds= 38v i d = 75a 
2014-8-13 3 www.kersemi.com
fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 70 80 90 100 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e 20 30 40 50 60 70 80 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 1000 2000 3000 4000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 12a 16a bottom 75a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 
2014-8-13 4 www.kersemi.com
1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature ri (c/w) i (sec) 0.2151 0.001175 0.2350 0.017994 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 75a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 

2014-8-13 5 www.kersemi.com
 
    fig 16. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a  
     
    

    100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 q r r - ( n c ) i f = 30a v r = 64v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 2 4 6 8 10 12 14 16 i r r m - ( a ) i f = 30a v r = 64v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 q r r - ( n c ) i f = 45a v r = 64v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 2 4 6 8 10 12 14 16 i r r m - ( a ) i f = 45a v r = 64v t j = 125c t j = 25c 

2014-8-13 6 www.kersemi.com
fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. !  
   for n-channel hexfet   power mosfets 1k vcc dut 0 l 
 
  ?  
 
  ?   
  ?  

 
  
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period "     " + - + + + - - -     ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  

    

2014-8-13 7 www.kersemi.com


 dimensions are shown in millimeters (inches) lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 

  
 example: in the assembly line "c" t his is an irf1010 lot code 1789 as s emb led on ww 19, 1997 part number as s e mb l y lot code dat e code year 7 = 1997 line c week 19 logo rect ifier int e r nat ional note: "p" in assembly line position indicates "lead-free" to-220ab packages are not recommended for surface mount application. 

2014-8-13 8 www.kersemi.com
to-262 package outline (dimensions are shown in millimeters (inches)) to-262 part marking information as s e mb l y lot code rectifier international as s e mb led on ww 19, 1997 note: "p" in as sembly line pos i ti on i ndi cates "l ead- f r ee" in the ass embly line "c" logo t his is an irl3103l lot code 1789 example: line c dat e code we e k 19 year 7 = 1997 part number part number logo lot code as s e mb l y int ernational rectifier product (optional) p = designates lead-free a = as s e mb l y s i t e code we e k 19 year 7 = 1997 dat e code or  igbt 1- gate 2- collector 3- emitter 4- collector 

2014-8-13 9 www.kersemi.com
 


  
  


 (dimensions are shown in millimeters (inches)) rect ifier int ernat ional logo lot code as s e mb l y year 0 = 2000 dat e code part number f530s a = as s e mb l y s i t e code week 02 p = de s i gnat e s l e ad- f r e e product (opt ional) int ernat ional lot code as s e mb l y pos ition indicates "l ead-f ree" as s embled on ww 02, 2000 note: "p" in assembly line in the assembly line "l" lot code 8024 t his is an irf530s with rect ifier logo line l week 02 year 0 = 2000 dat e code part number f530s or 

2014-8-13 10 www.kersemi.com
 


 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. 

2014-8-13 11 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRFB3207

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X